Natural variability in stage/discharge relationship: From in situ measurements to the SWOT satellite error estimates

S. Biancamaria¹ (sylvain.biancamaria@legos.obs-mip.fr), N.M. Mognard¹, Y. Oudin¹, E. Rodriguez², K. Andreadis³, M. Durand⁴, D. Lettenmaier³, D. E. Alsdorf⁴

¹ LEGOS, FR ² JPL, USA ³ University of Washington, USA ⁴ Ohio State University, USA

The SWOT mission

- The Surface Water Ocean Topography (SWOT) mission is a wide swath altimeter, with two 60 km swaths (with 10m to 70m across track resolution and 5m along track resolution).
 It will measure surface water elevation.
- 2 orbits have been considered:
 Orbit 1: 20 day repeat period, 74° inclination and ~950km altitude.
 - Orbit 2: 22 day repeat period, 78° inclination and ~950km altitude.

1. Error on the discharge due to the orbit temporal sampling

- (a) Hypothesis: SWOT measurement already converted in discharge
- (b) Methodology:
 - Gather in-situ daily discharges. Then extract the SWOT discharge time series (= dates where SWOT "see" the gauge).
 - Compute monthly mean discharge from daily (Qm $_{\rm tr}$ our "truth") and SWOT (Qm $_{\rm SWOT}$) time series and then the sampling error:

$$\frac{\sigma_{i}}{Q} = \frac{std \left(Qm_{i}(month) - Qm_{SWOT}(month)\right)}{mean \left(Q_{i}\right)}$$

- Classify these errors as a function of the river drainage area at the gauge location and then fit a relationship between the error and the drainage area.
- (c) Gauges used (from USGS, GRDC, ANA & HyBAM)

2. Error on the discharge due to the measurement error

- (a) Hypothesis: Power law relationship between discharge (Q) and river depth (D): $Q=c.D^b$ and $D=h-h_0$, h is the elevation measured by SWOT and h_0 is the river bed elevation.
- (b) Methodology: gather in-situ stage and discharge measurements. Then compute the error on the discharge estimate:

Then estimate the value of η , b and D at the gauge location and finally extrapolate these results everywhere along the river.

(c) Gauges used (from USGS, GRDC, ANA & HyBAM):

• (d) On river where there is no gauges, the river depth (D) can be estimated by using a power law relationship between river depth and drainage area (Moody and Troutman, 2002).

- Error due to SWOT measurement is low.
- Difficult to estimate model error (η): understimate if discharge not directly measured (most gauges), overestimate if different flow regimes (needs at least two different power laws). Can be estimated ~20% (Dingman and Sharma, 1997; Bjerklie et al., 2003)
- (f) Estimate of the *b* coefficient for all rivers (even with no gauges available):

Conclusion

- Importance of the SWOT temporal sampling on the computation of monthly discharge.
- SWOT spatio-temporal errors have been computed from in-situ networks and for different satellite orbits.
- General hydrological parameters have been derived from these analysis.
- These parameters could be used to generate discharge error maps for a global river network.